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1. Introduction

This report contains a brief summary of results attained in the last

six months (section 2). We also itimize our research plans for the next

six months (section 3). A budget sunmmary (section 4), references (section 5),

a list of reports prepared during this period (section 6) and acknowledgements

(section 7) are also contained herein. Finally, a new paper produced as part

yof this contract is attached as an appendix. This paper describes, in depth,

* our work with Bayesian Decision Theory. A summnary of these results appears

in section 2. 1.
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2. Brief Summary of Results

2.1 Bayesian Decision Theory

Extensive simulation of a decentralized control algorithm for job

scheduling based on Bayesian Decision theory has been performed. The main

results show that the algorithm can dynamically adapt to the quality of state

information being processed. The need for this adaptive capability grows with

the decline in the quality of information available. The decline in quality

of state information is due to delays and failures in the communication subnet.

Specific observations of our simulations include: that once tuned,the

algorithm works in a stable manner over a wide variety of conditions and over

a large number of runs, that the probability distributions describing the

true states of nature and the likelihoods of an observation (these distribu-

tions are part of Bayesian decision theory (see the Appendix for more details))

converge tovalues representing the level of observability of the sytem, and

that the loss of monitor nodes (included to update probability distributions

and recalculate maximizing actions of Bayesian decision theory) does not cause

major problems. The simulations also show that our algorithm works well

under light loads but simpler approaches would be just as good, that the need

for our algorithm increases both for moderate loads and, as stated above, for

a decrease in the accurracy of state information available, and several thres-

- holds included in the algorithm improve the operation of the algorithm.

-" These results and several others are reported in depth in the paper found

in the Appendix.

b.
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2.2 Scheduling with Real-Time Constraints

Tasks in many distributed systems have severe real-time constraints.

Examples of such systems are, nuclear power plants and flight control software.

These tasks have execution deadlines and may have precedence constraints and

specific resource requirements. Most current research on scheduling tasks

with real-time constraints is restricted to multiprocessing systems and hence

are inappropriate for distributed systems. With today's advances in software,

hardware and communication technology for distributed systems, it may be

possible to deal with distributed real-time systems in a more flexible manner

* than in the past. Our efforts are directed at developing distributed task

scheduling software for loosely-coupled systems with the goal of achieving

* reliability and flexibility.

Multiprocessor scheduling in a hard real-time environment has been

described by Mok and Dertouzos [MOK7B) in terms of a token game. According

to their analysis

1. Earliest deadline scheduling in the case of a single processor is
optimal

2. In the multiprocessor case, earliest deadline is not optimal.

3. For two or more processors, no scheduling algorithm can be optimal
without a priori knowledge of (i) deadlines (ii) computation times,
and (iii) state-times of the tasks.

4. In general, optimal scheduling is an NP-hard problem and is hence
computational ly intractable [GRAH79].

Leinbaugh [LIEN82J has developed analysis algorithms which when given the

device and resource requirements of each task and the cost of performing

system functions determines an upper bound on the response time of each

task. Our intention, on the other hand, is to develop scheduling strategies

so that tasks meet their real-time constraints.
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Distributed task scheduling

It should be clear that a practical scheduling algorithm has to be

based on heuristics in order to reduce scheduling costs and will have to be

adaptive. This is the context in which we have been studying the problem of

scheduling in distributed systems.

Our research involves scheduling tasks, with real-time constraints, on

processors in a network. A task is characterized by its start time, compu-

tation time and deadline. We assume that schedulers on each node in the

network interact with one another in the process of scheduling new tasks.

Tasks may be periodic or non-periodic. From a scheduler's point of view, a

periodic task represents tasks with known (future) start times and deadlines,

whereas, a non-periodic task may arrive at any time and may have arbitrary

deadlines. In both cases, we assume that a task's computation time is known

a priori. Tasks may arrive at any node in the network. When a new task

arrives, an attempt will be made to execute the task at that node. If this

is not possible, then the scheduler on the node interacts with the schedulers

on other nodes in order to determine the node on which the task can be sent

to be scheduled.

Functioning of the scheduler on a node

Underlying our scheduling algorithm is the notion of guaranteeing a

Vask. A task is said to be guaranteed if under all circumstances it will be

scheduled to meet its real-time requirements. Thus, once a task has been

guaranteed, all that is known is that the execution of the task will be

completed before its deadline; exactly when it will be scheduled is dependent

on the scheduling policy, the tasks that have been guaranteed but are waiting

to be executed, the nature of periodic tasks, etc.
As mentioned earlier, for a uniprocessor, the earliest deadline

algorithm is optimal. In our scheme, guaranteed tasks are executed
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according to the earliest-deadline-first scheme. On each node, information

about its surplus processing power, i.e., the surplus after allocating

processing power for guaranteed tasks, is maintained in a surplus table.

This information is used to expedite the guaranteeing of newly arriving
tasks. The surplus table is maintained by assuming that tasks are executed

at the last possible instance, just sufficient to meet the deadline. This

makes it possible to guarantee new tasks with earlier deadlines. Compared

to the token game played in [MOK78] in order to schedule new tr s, we believe

that the maintenance of surplus decreases the overheads involve in scheduling.

It should be mentioned that our use of the earliest deadline a -- hm for

scheduling tasks on a single node does not guarantee an optimal schedule on

the network as a whole, which, as mentioned earlier, is a computationally

infeasible problem. Our aim here is to guarantee tasks quickly and to reduce

overheads. Our simulation studies are an attempt to analyze the algorithm's

behavior.

Interaction between schedulers on multiple nodes

The scheduler on a node interacts with those on other nodes in a

network to determine where a new task could be guaranteed. We propose to

utilize

1. the knowledge contained in each scheduler regarding the surplus
processing power in other nodes, and

2. a bidding approach wherein a node with a task to be guaranteed
requests for bids from nodes which may have sufficient surplus
[SMIT8O].

Details of this scheme are currently being developed. Some of the policy

decisions to be made pertain to

1. the information that needs to be exchanged between nodes in order
for each to possess knowledge, albeit incomplete and partially
correct, about other nodes,

2. the parameters of the new task that needs to be sent to the bidders,
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3. the specification of eligibility to be a bidder,

4. the specification of bids,

5. the length of time a node should wait before it processes bids,

6. the determination of the "highest bidder",

7. the inclusion of communication time in the scheduling computations,
and

8. the heuristics that can be used to reduce scheduling costs.

Evaluation of the Scheduling Algorithm

Currently we are in the process of analyzing our scheduling algorithm

through simulation of the algorithm's behavior in the presence of both periodic

and non-periodic tasks. The present simulation, which deals with scheduling

tasks on a single node, is being upgraded to include the bidding scheme

whereby it will be possible to schedule tasks arriving at any node in a net-

work. This will also permit the study of differe.it scheduling alternatives

and their performance and the tradeoffs entailed by them.
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2.3 Other Simulation Results

Simulation results of three adaptive, decentralized controlled job

scheduling algorithms have been attained [STAN83a]. The results provide

insight into the workings and relative effectiveness of the three algorithms,

as well as insight into the performance of a special type of decentralized

control. Our simulation approach included tuning the parameters of each

algorithm, and then comparing the three algorithms based on response time,

load balancing and the percentage of job movement. Each of the algorithms

is compared under light, moderate, and heavy loads in the system, as well-as

a function of the traffic in the communication subnet and the scheduling

interval. A general observation is that, if tuned correctly, the decentra-

lized algorithms exhibit stable behavior and considerably improve performance

(response time and load balancing) at modest cost (percentage of job movement).

Overall, the results contribute to the understanding of a speical type of

decentralized control algorithm that has not been extensively studied but is

becoming more and more important. These algorithms do not work as well as

the Bayesian Decision Theory algorithm but are less costly. Wenow briefly

describe each of the algorithms.

Algorithm 1 For moderate loads in the system, each entity compares its

own busyness to its observation (estimate) of the busyness of the least busy

host. Note that the host thought to be least busy is itself an estimate.

. The difference between the busyness of these two hosts is then compared to

- - a bias. If the difference is less than the bias, then no job is moved, else,

one job is moved to the least busy host. Jobs are not moved to oneself.

Algorithm 2: Each entity compares its own busyness to its observation

* (estimate) of the busyness of every other host. All differences less than

or equal to biasl imply no jobs are moved to those hosts. If the difference

-- is greater than bias1 but less than bias2 then one job is moved there. If the
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difference is greater than or eq -1 to bias2 then two jobs are moved there.

In no case are more than (y) (z) jobs moved at one time from a host, where y-

fraction of jobs permitted to be moved, and z = number of jobs currently at

this host. If there is more demand for jobs than an entity is permitted to

move, it satisfies the demand in a pre-determined fixed order.

Algorithm 3: This algorithm performs in the same way as algorithm 1

except when an entity, e1, sends a job to host k at time t, it records this

fact. Then for time delta t, it records this fact. Then for time delta t,

ayte duingow thienindoweiod, ntt e alculaesr ta host k. Ia

alltieduinow thient will nerot sendny morlcuwork toa host k ifa

least busy then no job is moved during such an activation. Of course, during

*the window, jobs may be sent to other hosts if they are observed as least busy

by greater than the bias (same bias as in algorithm 1).

One prime motivation behind these three algorithms is that they are all

very simple and inexpensive to run, necessary conditions for scheduling

algorithms. In algorithm 1 the relative busyness between host i and the least

busy host (plus a bias) is used to determine if a job should move. This is

about the simplest algorithm we can devise. Since algorithm 1 only moves jobs

to the least busy host we felt that a better algorithm might be to spread the

* work around, i.e., move some work to all the lightly loaded hosts from the

* * heavily loaded ones. Hence algorithm 2 was devised. Finally, we were worried

that jobs in transit to a lightly loaded host were not taken into account

possible producing instabilities. For example, if (1) host 1 was very busy,

* (2) host 5 was least busy, (3) host 1 were activated every 2 seconds, and

* (4) it took 16 seconds for jobs to research host 5, then host 1 could con-

ceivably send at least 8 jobs to host 5 before the first one was received.

Other hosts could be doing the same thing. This could result in an unstable

situation. Algorithm 3 was designed to avoid such problems.
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By comparing performance of the three algorithms to each other and to

analytical results, it was concluded that while algorithms I and 3 worked well

algorithm 2 was the best. An important result is that very simple (execute

fast) decentralized controlled job scheduling algorithms can effectively improve

performance. Another result is that by utilizing a minimal amount of state

information (number of jobs) it was shown that one gets better performance

than the optimal fractional assignment which we obtained analytically.

Another modification that we suggest is to avoid moving very large (in size)

jobs because this congests the subnet and degrades overall response time.

This additional state information is easy to obtain and the added execution

time checks required are trivial.
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2.4 Survey Paper

A survey of current research in distributed systems software was

prepared [STAN83b]. Emphasis was placed on research in distributed operating

systems, programiing languages and databases. An attempt was made to

categorize current solution techniques for the individual issues. Important

open research questions were itemized including:

1. Distribution of Control: Decentralized control algorithms for
various functions of operating systems, such as task scheduling
and resource allocation, are needed especially those concerned with
a high degree of cooperation between decentralized controllers.
Investigation of scheduling concepts such as bidding, clustering,
co-scheduling, pause time, wave scheduling is required. The use
of various mathematical models such as adaptive control, stochastic
control, statistical decision theory, and stochastic learning
automata for dealing with uncertainty, inaccuracies and delay in
distributed systems is also necessary. Scheduling tasks with
real time constraints on a loosely coupled distributed system has
received little attention to date due to the difficulties involved.

2. Distribution of processes and resources: It is an open question on
hiow to distribute processes that cooperate to execute a given task.
This would affect the topology of the resulting network of processes
and the manner in which individual nodes are designed. A crucial
question is whether movement of processes in execution is worth it
and what the best means to implement such movement is. Tradeoffs
between static and dynamic allocation of resources should be
investigated. Directory assignment, replication and partitioning
should also be addressed. For client - server models of distributed
file systems where do we divide the responsibility between file
servers and clients? When should distributed file systems be
embedded in the operating system and when should a file server model
be used? How should the operating system itself be distributed?
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2.5 Stochastic Learning Automata

We have been working on a heuristic to perform decentralized job scheduling

based on Stochastic learning automata. The actual heuristic has been described

* in previous reports. During this period the complete simulation program for

a network of nodes, each operating as a stochastic learning automata, has been

* implemented and is currently being debugged. We expect to compare results of

* these simulations with the Bayesian Decision theory approach completed during

this period (see Appendix). A possible problem that we might encounter is

a very high cost of simulation runs in order to get the automata to converge

on the proper set of actions. This may limit the amount of simulation we want

to perform.
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2.6 Other Activities

In this section we list several additional activities that were done in

conjunction with this contract:

1. Presented a paper [STAN83c] at INFOCOM83, in April 1983.

2. Guest speaker at Distributed Artificial Intelligence Workshop held
in June 1983 in Holyoke Massachusetts. Presented portion of
ESTAN83b] and the paper found in the Appendix on Bayesian Decision
theory. The purpose of the talk was to discuss issues and results
found in distributed operating systems and in decentralized control
algorithms that might apply to artificial intelligence systems.

I-..

o.
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3. Research Plans

Work will continue on debugging, improving, and extending the three

simulation programs developed over the last eight months. These programs

are scheduling simulations for (a) a general bidding model, (b) an algorithm

based on stochastic learning automata, and (c) a single host algorithm that

can handle real time constraints (this last algorithm will be extended to a

network simulation).

Once we are convinced that the simulation programs are accurate we will

begin evaluation runs. Evaluation of the simulation programs results is

expected to take a considerable amount of time.

We also plan to investigate estimation techniques that can eventually

be added to the above simulation programs.

We expect that research emphasis will shift to the scheduling algorithm

based on bidding since this is more sophisticated and takes issues such as

clustering, resource requirements, precedence, etc. into account. The

simpler algorithms evaluated assume no a priori information and therefore

do not address these issues.
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4. Budget Summnary

4.1 The Current budget for the 2nd year of this contract is:

Month Planned Amount Actually Spent

December (82) 3,857.06 3,857.06

January (83) 2,575.83 2,575.83

February 4,000.00 3,412.64

March 4,000.00 449.30

April 4,000.00 1,834.66

May 4,000.00 1,142.33

June 7,000.00

July 7,000.00

August 7,000.00

September 3,397.64

October 3,000.00

November 3,000.00

December 3,000.00______

*TOTAL 55,830.53 13,271.82

4.2 Cununulative Cost to date:

1. 30,236.47 (first year expenditure) +13,271.82 =43,508.29
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4.3 Revised Budget for remainder of 2nd year of contract

Month Planned

December (82) 3,857.06
January (83) 2,575.83
February 3,412.64

March 449.30
April 1,834.66

May 1,142.33
June 8,000.00
July 8,000.00
August 8,000.00

September 6,558.71

October 4,000.00

November 4,000.00

December 4,000.00

TOTAL 55,830.53
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Abstract

There is a wide spectrum of techniques that can be aptly named

decentralized control. However, certain functions in distributed operating

systems, e.g., scheduling, operate under such demanding requirements that no

known optimal control solutions exist. It has been shown elsewhere that

heuristics are necessary. This paper presents a heuristic for the effective

cooperation of multiple decentralized components of a job scheduling function.

An especially useful feature of the heuristic is that it can dynamically adapt

to the quality of the state information being processed. Extensive simulation

results that show the utility of this heuristic are presented. The simulation

results are compared to several analytical models and a baseline simulation

* model. The job scheduling heuristic presented here is based on an extension of

Bayesian decision theory. Bayesian decision theory was used because (a) its

principles can be applied as a systematic approach to complex decision making

under conditions of imperfect knowledge, and (b) it can run relatively cheaply

in real-time.

I- i - - - . . . • - , ,. .
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1.0 Introductio~n

Depending on the application and requirements, decentralized control can

take on many various forms [] [16] [17] (21] [22] [28] [33] [44]. Although

research has been active for all types of decentralized control, the majority of

the work is based on extensions to centralized solutions where the entire state

is known and can be more accurately described as decomposition techniques,

rather than decentralized control. In such work, large scale problems are

partitioned into smaller problems, each smaller problem being solved, for

example, by mathematical programming techniques, and the separate solutions

being combined via interaction variables. In many cases the interaction

variables are considered negligible and in others they are limited in the sense

that they model very limited cooperation. See [21] for an excellent summary of

these types of decentralized control (decomposition). In many of these cases it

is an irrelevant detail that individual subproblems are solved in parallel on

different computers.

A number of surveys relating to decentralized control have also appeared

*" [17] [31] [38]. These survyes note the unclear meaning of optimality for

-4 . decentralized control and hypothesize the need for a completely different

approach. One such approach is based on the concept of a domule which a

combination of a decision agent and its subsystem model [44] [45]. Using this

concept, interesting heuristics are proposed for the class of decentralized

control problems where significant cooperation is required, but these heuristics

are based on decomposition techniques. We are interested in addressing another

form of decentralized control where cooperation among the decentralized



controllers is significant as in the domule model but where decomposition is not

possible to any large degree. The job scheduling function of distributed

operating systems can be implemented with this type of decentralized control.

As a point of comparison, consider two forms of decentralized control:

decentralized control that arises in distributed databases, and decentralized

control that arises for stochastic replicated functions, such as job scheduling.

By replicated functions we mean that the decentralized entities (controllers)

implementing a function are involved in the entire problem, not just a subset of

it. While the approach of replicating the function may be inefficient for large

scale problems, it is appropriate for certain functions like job scheduling.

Solutions to the decentralized control problem in distributed databases

are known E1] [2] (27]. The integrity of the database must be maintained by

decentralized controllers in the presence of concurrent users. The

decentralized controllers must somehow cooperate to achieve a system-wide

objective of good performance subject to the data integrity constraint. The

cooperation is achieved in various ways, e.g., by the combined principles of

atomic actions and unique timestamps, or by the combined principles of two-phase

locking and atomic actions, or by certification techniques. It can then be

proven that multiple decentralized controllers can operate concurrently and

still meet the data integrity constraint (2]. The data integrity constraint

simplifies the problem and makes it solvable, but at the same time it lowers

performance since users must sometimes wait. However, for other functions such

as job scheduling, there is no requirement for absolute data integrity. In

fact, if such a constraint were required for scheduling, then, in general,

performance of the system would suffer dramatically. Removing the data

integrity constraint from the scheduling algorithm improves its performance, but

* the control problem becomes much more difficult. In fact, in the most general

form, solutions to decentralized control of stochastic replicated functions such
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as job scheduling are not known [22]. In this paper a heuristic for this type

of decentralized control is presented.

* Section 2 describes the Characteristics Of the decentralized control

-~ problem for job scheduling as well as some of the related scheduling research.

- Section 3 presents our heuristic for decentralized job scheduling based on an

extension to Bayesian decision theory. The heuristic is adaptive and addresses

stability. the assignment of credit problem. the execution cost of running the

heuristic itself, the noisy environment and the goal of system-wide performance.

Section 4 describes the simulation and analytical models used in this research.

- Section 5 presents the simulation results for the heuristic as well as

*comparisons to a baseline simulation model and several analytical models. The

-overall results show the effective operation of our heuristic. Specif ic tests

illustrate the operation of the heuristic as a function of several parameters of

* the heuristic, arrival rates, subnet delays, scheduling intervals, and the

* complete loss of special monitor nodes whose purpose is described later.

Section 6 summarizes the conclusions of this study.
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2.0 Background and Characteristics of the Problem

Most of the research on scheduling for distributed systems can be

considered task assignment research and can be loosely classified as either

graph theoretic [3] [6] [41] [42] [43], queueing theoretic [5] [20], based on

mathematical programming [7] [8] (24], or heuristic [4] [10] [11] [34]. In most

of these cases a task is considered composed of multiple modules and the goal is

to find an optimal (or in some cases a suboptimal) assignment policy for the

modules of an individual task. Typical assumptions found in task assignment

work are: processing costs are known for each module of the task, the

interprocess communication costs (IPC) between every pair of modules is known,

IPC is considered negligible for modules on the same host, and reassignment is

not performed.

Scheduling for extremely large distributed systems, e.g., Wave Scheduling

[47], and attempting to cluster related jobs on a host [19] [29] are forms of

scheduling receiving more attention. These are not treated in this paper

because they require a priori knowledge about arriving jobs.

Other distributed scheduling research is based on the bidding scheme (13]

[331. Here, specific tasks are matched to processors based on the current

ability of the processors to perform this work. These schemes are suboptimal

and require a priori knowledge, but are more extensible and adaptable than many

of the other approaches. However, the cost of making and acquiring bids may

become excessive, and the factors to use in making the bids have not been

* extensively studied.

Our approach is an alternative to the above methods that does not require

any priori knowledge, is highly decentralized and adaptive, and operates

probabilistically.

We wish to consider a very demanding set of requirements. Consider the

job scheduling function to be part of a distributed processing operating system



[9] [12] [18] [351. The scheduling function itself is to be dynamic,

decentralized, adaptive, asynchronous, and operate in a noisy, error prone and

uncertain (stochastic) environment. An important aspect of the environment is

that significant delays in the movement of data (jobs and state information) are

commonplace. Furthermore, the delayed effects of the interactions (decisions)

make it difficult if not impossible to know the direct system-wide effect of a

particular action taken by a controller. For example, assume that controller i

takes action a. at time t and assume that the net effect of all the actions of1

all the controllers at time t improve the system. It cannot be assumed that

action ai was a good action, where, in fact, it may have been a bad action

dominated by the good actions of other controllers. This problem is sometimes

referred to as the assignment of credit problem. One major advantage of our

heuristic (as we shall see) is that it is able to deal with this problem in a

cost effective manner.

It is important to note that the stochastic nature of the system being

controlled affects two distinct aspects of Job Scheduling: an individual

controller's view of the system is an estimate, and future random forces can

effect the system independently of the control decision. Throughout this paper

the job scheduling function is considered as implemented by n decentralized

replicated entities (controllers). For reliability we require that there is no

master controller - in other words each of the entities is considered equal

(democratic) at all times. Furthermore, one of the most demanding requirements

is that the lob Scheduling function must run in real-time with minimum overhead

(time-sensitive). This requirement eliminates many potential solutions based

on mathematical or dynamic programming.

Central to the development of a decentralized Job Scheduling function is

the notion of what constitutes optimal control. However, such a notion for
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dynamic, Jemocratic, decentralized, replicated, adaptive, stochastic, and time-

sensitive (D3PAST) functions has not yet been well formulated. In fact, this is

such a demanding set of requirements that we have not found any mathematical

techniques that are directly applicable (38]. Uowever, it seems that Bayesian

decision theory can be extended to provide a heuristic for this control problem.

More precisely, our approach for scheduling in distributed systems is to

divide the scheduling function into two parts: a decentralized job scheduler

(DIS) and a decentralized process scheduler (DPS). Incoming jobs are placed on

the wait queues at their site of entry and the DIS (composed of multiple

entities) attempts to keep the number of waiting jobs at each site roughly equal

in order to improve response time. Again we emphasize that the D3S has no

knowledge about the characteristics of incoming jobs. The DIS, operating in a

highly decentralized fashion, does however, maintain state information about the

network in order to continually adapt to the state of the network. Reassignment

of jobs is possible and may cause looping or other forms of multiple moves.

Certain aspects of the DIS are similar to routing research [251 [26] [32], e.g.,

the concept of passing state information at low cost, but differ in that there

are no intermediate sites and our heuristic adapts in a different manner based

on Bayesian decision theory. The overhead of the DIS is kept low by running

relatively infrequently, by adding cheap monitor nodes, (described in Section 3)

"- and by using an inexpensive heuristic. As an example,- included as part of the

heuristic is the logic that when the system is observed as heavily or lightly

loaded the DIS turns itself off (except for the portion that would recognize

movement out of these states). In summary, the intent of the DIS is to keep the

amount of waiting work at each site roughly equal in an attempt to improve

response time, and to do this with low execution-time cost.
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The DPS decides which jobs are activated from the wait queues of the DJS.

The DPS deals with multiple modules of a job, their resource requirements,

clustering concerns and assignment during execution of the job (process). In

both the DIS and the DPS, jobs and the modules, respectively, may move any

number of times up to some pre-defined limit. This paper describes the results

obtained by using Bayesian decision theory (BUT) as a basis for the DYS. The

DPS is not discussed any further.

The motivations for splitting the scheduling function into two parts, are:

1) The DYS can be simple and therefore, it is possible to study the

use of BDr on simpler decentralized control situations, (in this

work we are attempting to understand how multiple, interacting

decentralized components of a single function interact), and

2) to eventually study how 2 (or more) decentralized control

algorithms interact with each other, e.g.. the interaction of the

DYS and DPS may provide insight into how an entire system

composed of multiple decentralized control algorithms might

function.



3.0 Bayesian Decision Theory

The general model for Bayesian decision theory [151 [23] [46] contains

five ingredients and a set of maximizing actions. The ingredients are:

1) The set of available actions, A=(a1 , a2 ...

2) The set of the states of nature which can occur O-[ .. .

'2' ..

and the probability distribution on the states of nature, P(s).

3) The utility function p(e, A), which contains the consequences of

each combination of action and state of nature.

4) A set of possible observations Z-(zlo z2 #...] and the likelihood

distribution P(ZIe).

5) The choice criterion is to maximize expected utility.

Using the above ingredients a simple set of calculations is performed to

produce a set of maximizing actions [15] [30] [40] . The set of maximizing

actions is a list of what action to take for each possible observation. Hence,

once these calculations are performed, a controller needs only to perform a

table look-up to determine what action to take given that it has made a

particular observation. See Appendix I for a more detailed description of

Bayesian decision theory.

The heuristic for applying this general model to decentralized control

Salgorithms is to model each of the n job scheduling controllers as a Bayesian

decision maker with the states of nature and observations being defined

network-wide (see Appendix I). Periodically, state information is passed

between the n controllers so that each controller has a reasonable approximation

about the state of the network. Precisely how state information is passed is

described in Section 4 when describing the simulation model. The period of

update is an important parameter both for cost and for the relative accuracy of

the data involved. In adition, special monitor nodes of the network act to



dynamically adjust the probability distributions P(O) and P.(ZIO), 1 i 1, 2,. n

by gathering statistics to recalculate the maximizing actions, and to downline

load these maximizing actions to each of the n scheduling controllers. This

dynamic re-calculation of maximizing actions is a centralized aspect to our

heuristic and can also be considered a form of cooperation because each

controller informs a centralized component of its true state and its observed

state at time t. This information is then used to alter the individual

probability distributions needed by each of the controllers. This centralized

aspect of our heuristic is permitted because (a) it is a convenient way to

calculate the true state (note that it is a true state that has occurred in the

past) and. (b) if the centralized monitor node crashes the decentralized

controllers can continue to function using the last or a default set of

maximizing actions until a backup monitor is activated.

Coordination between the decision makers is accomplished in an implicit

manner by passing state information around the network. In other words, there

is no direct feedback to a controller of the system-wide goodness of its

particular action which is often difficult if not impossible to obtain.

Feedback occurs implicitly through the changing states of nature and the

updating of the probability distributions. For example, as state information

* progresses through the network it affects the observations of the different

. controllers and thereby affecting their control decisions. The quality of the

coordination and the resulting performance of the decentralized control

algorithm is measured and tuned by simulation. In practice the tuning would be

done on a real system. As a result, the assignment of credit problem is

finessed. Of course, many other forms of cooperation are possible (and we are

working on some of them) but any based on iterations of communications between

controllers or any based on sequential processing (e.g., controller i goes



first, then controller i+1, .. )are inappropriate for job scheduling due to

U their high cost. One aspect of using Bayesian decision theory needs some

further discussion: the a priori probability distributions PMO and P(ZlG).

3.1 A Prior Probability Distributions

Each controller maintains a table of state information that contains its

own view of the state of the network, i.ea., it believes some 0. is the true

state. The controller's view at a particular instant of time is called an

observation.

More formally, the conditional probability that host i observes z1 when

the true state of nature is e1is written as 2 (z, 101). In general, the values

P (zKle) vary for each controller and over time. However, with the addition of

two microprocessors (monitor nodes) shown in Figure 1 'we can deal with the

dynamics of the system. One microprocessor serves as a monitor that calculates

new probability distributions and maximizing actions as the system changes. The

second microprocessor is also available and used only if the first monitor

becomes unavailable due to failures. Hardware cost of these microprocessors is

*negligible. In some cases connection costs to the network for these

microprocessors may be significant, but we are primarily interested in local

*networks where these costs should be small or negligible. By adding the monitor

- the additional processing for the Bayesian decision theory calculations and the

- updates to probability distributions are done in parallel with the normal

functioning of the system. Mlessage overheads are not signif icant because the

messages are small (as described below) and periodic.



In the development of the proposed heuristic using Bayesian decision

theory, the immediate problem is how to obtain P 1 0) i =1, 2,.. .n. Remember,

* each host periodically adjusts its view of' the network by obtaining state

information from its neighbors. After such an update, at time t, host 4's state

vector might look like this

Host No. No. of lobs (or some other busy est.)

2 12

On Host 4 3 7

4 10

5 20

*At this point a small amount of additional processing can convert this

*information into the observation. In this example the above state information

converts to z4V i.e., conditions are mo derate and host 3 is least busy by 1-4

* jobs (see Appendix I for definition of Z) . A simple message to the monitor

* would then include

Host. No. Observation

in order to calculate P (Zle) it is also necessary to calculate the true state
i

of nature, e.. This can be accomplished by having each host transmit the number

of jobs at its Site. This local information is completely accurate. For

*example, host 4 can determine with probability 1, how many jobs are at its

* site. Hence, the message to the monitor from a host must contain three fields.
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Host. No. [Observation f Host's Statej
In this example the three fields are 4 j 0

Host messages to the monitor need not be completely synchronized but each

host should send one message per update cycle (missing messages can also be

handled). Then, for each update cycle when all the messages arrive at the

central monitor, the true state 0. can be calculated for time t using the Host

Number and Host's State fields of all the host's messages. Time t is a time

in the recent past. Also available is each host's observation . Using e. and

the host's observation the monitor can update the probability distribution

P (Z16) i = 1, 2. ... ,n depending on what is observed versus the true state of
i

nature. This overall process is continued for an appropriate time T where T is

a system parameter that varies depending on the dynamics of the system. After

time T the new probability distributions P(W) and P.(Z10) i = 1, 2, ... n are1

used in calculating new maximizing actions for each host and these new

maximizing actions are downline loaded. These messages are also small and in

our study only 16 integers need to be passed to each host (see Appendix I) . In

summary, dynamic updates to the probability distributions are not difficult,

although choosing a good message interval t and update interval T could be

difficult.

Moonitor

I3

Figure i: Network Topology



4.0 The Simulation and Analytical Models

The evaluation process for the proposed heuristic includes a baseline simulaticn

model, a Bayesian decision theory (I3DT) simulation model and three simple

analytical models. Each of these models is described in this section.

4.1 Simulation Models

In our simulations five main characteristics are studied:

1. Parameters of the Algorithm -Several parameters of the BIYT model

are treated as tunable. These include the biases involved as

part of the definition of the state of nature, e, and the update

interval for recalculating maximizing actions.

2. Arrival Rates - Four different sets of arrival rates are used in

the simulations (Table 1) . The sets of arrival rates are labeled

tuning, light, moderate, and heavy. In tuning the baseline and

DDT algorithms, it was decided to use a different set of arrival

rates than those used for the subsequent algorithm comparisons.

This is because, in practice, such algorithms would raot be tuned

precisely for the current arrival rates. The light and moderate

loads are considered the normal network situation. It was

decided to simulate a heavy system load to determine how the

algorithm performs when, for relatively short times (40 minutes),

a system experiences arrival rates greater than its ability to

service them.

3. Delay in the subuet - The change in the amount of traf fic in the

subnet affects response times and load balancing. The affect of

this change on the DDT algorithm is studied.

4. Schedulina Interval - The affect of a change in the scheduling

interval from 2 -> 4 ->8 ->16 seconds is tested.



5. Loss Of Monitor Nodes -The BDT heuristic requires updated

probabilities provided by monitor nodes. While an enhanced

degree of reliability is possible by adding more and more

monitors we studied the affect of a complete failure of this

updating capability.

While many other characteristics could be studied including size of the

* network, topology, speeds of the hosts, etc. we felt that the characteristics

* studied here are some of the most important.

Table 1 -Arrival Rates (Jobs/Second)

HOST TUNING LIGHT MODERATE HEAVY

1 .18 .1176 .153 .2

2 .1 .1 .125 .2

3 .111 .111 .143 .2

4 .133 .0588 .143 .2

5 .125 .125 .125 .2

The baseline and BDT simulation models are programmed in GPSS and consists

of a message based network [37] of five hosts connected as shown in Figure 1.

The unit of time in the simulation is milliseconds. Each host is considered

identical except for processor speed. The service time of a job scheduled for

* execution is chosen from an exponential distribution with different averages for

* each host. The averages are 5000, 7000, 6000, 5000, and 7000 milliseconds for

hosts 1-5 respectively. There are five independent sources for arrivals of

jobs. Each source is modeled by a Poisson distribution with averages X1. X2

X3* X4  . The X's vary depending on the particular loads (tuning, light,

* moderate, heavy) being modeled (Table 1) . When a job arrives at a host from the
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external world it is assigned a size based on the distribution given in Table 2.

Delay in the communications subnet is modeled as a simple function, i.e., the

size of the information to be sent divided by the packet size (1K bits) times

the average delay per packet. Hence, the delay in the subnet is indpendent of

the topology in our simulations. Both jobs and state information are passed

into the subnet, thereby modelling two of the major costs involved. Another

cost, the cost of running the job scheduling algorithm on each host, is

inexpensive since it is primarily a table lookup and passing of state

information to neighbors. The Job Scheduling Algorithm is modeled as a fixed

cost of 50 milliseconds each time it runs on each host.

Table 2:

Job Size Distribution n (bits):

.1 10,000 .85 22,000

.2 12,000 .9 30,000

.4 14,000 .95 34,000

.6 16,000 .98 38,000

.7 18,000 .99 44,000

.8 20,000 .995 50,000

In the simulations, each host periodically calculates an estimate of the

number of jobs at each host in the network, and sends this information to its

nearest neighbors. This state information is updated at each host in the

following way. Consider three classes of hosts, myself, my neighbors, and all

others. In general, host i can determine precisely the number of jobs in its

own queue (accurate local data), and therefore, will believe its own value

rather than his neighbors perception of his workload. Since the nearest

neighbors are only one hop away, their estimates of their workload, as passed to
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host i, will be only slightly out of date and, in general, will be a better

estimate than estimates other nodes have of them. Therefore, host i uses the

nearest neighbors estimate of themselves. All other views of any remaining

hosts in the network are determined by taking an average of the estimates from

all the incoming update messages. Each job scheduling controller then has an

out-of-date observation of how many jobs exist at each site in the network. In

future simulations we intend to study the effect of using more sophisticated

state information (not just the number of jobs) to estimate the busyness of a

host, and to use asynchronous updates of state information rather than periodic.

The simulation program was designed so that it is easy to plug in different

job scheduling algorithms (see (39] for results on other algorithms) . The job

scheduling controllers are activated periodically and also whenever the process

scheduler of a host needs to activate a new job for execution. A simple FCFS

process scheduler is included that does not allow multiprogramming.

A practical consideration for job scheduling algorithms comes into play

for very lightly loaded and very heavily loaded systems. In both instances it

is not beneficial to move jobs, therefore, jobs are not moved by a host if it

obsery" a very lightly or very heavily loaded system. Very lightly loaded is

defined as each host has less than 4 jobs. A very heavily loaded system is

defined as each host has more than 20 jobs. All other situations are

considered moderate loads.

In the baseline simulation model each host compares itself to the least

busy host and moves 1 job there if the difference is less than a bias. The

baseline simulation model is a full network model where the model assumes that

100 accurate information is available. This is considered a type of 'lower

bound'. The goal is to have decentralized control algorithms, where inaccurate

information does exist, approach the 'lower bound'.
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In the BDT simulation, hosts move jobs if the actions calculated via the

BDT scheme indicate a move is to take place. This is based on the definition of

0 and Z (see Appendix I) and the calculation of the maximizing actions. The EDT

model, of course, uses inaccurate information.

4.2 Analytical Models

4.2.1 Analytical Model - Lower Bound

Analytical solutions to the complex network situation we are

simulating are not known. However, by making simplifying assumptions

it is possible to analytically obtain some idea of the lower bound.

Assume that the arrival process is Poisson and that service

times are described by an exponential distribution. Assume that the

service rate g is order so that g g iff i < j. For our network

of 5 hosts, this situation is described by the state transition

diagram given in Figure 2.

3 4 . 5, ,

V2 1 1"11 11 42
+ + + + +

12 32 V. P3
+ + + +

1"13 143 1.3 143

+ + +

IJ4 P4 U4

+ +
15 115

Figure 2 - State Transition Diagram
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In general, let the number of processors be N. Define

=(2) =
j1

M(i) = ai(i) i = 1,2,...

M(O) - 1.

Then, using the conservation of flow principle and P(j) 1, we
J

obtain

P0 (N() XJM(j) )

The expected queue length is given by

j. (  X(j) M R -;L (N)

Using Little's formula, the expected delay is

T -

The response times, T, calculated as lower bounds for our given

arrival and service rates, are presented in Table 3.

Table 3 - Lower Bound Response Times

System Load

Light Moderate

6.16 sec 9.3 sec

This lower bound calculation assumes no communication subnet delay,

and that a job can be preempted and moved to a faster processor as

soon as that processor becomes available, again at no cost. Although
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this analytical model cannot be achieved in practice, it does serve

to put a lower bound on our results.

4.2.2 Analytical Model - Fractional Assianment

Assume for a moment that each host knows the fraction of jobs

arriving at its site from the external world that it should keep, and

the fraction that it should send to each of the other hosts to minimize response

time. Such an algorithm would have lower cost than the BDT heuristic because no

state information is passed around the network. But how would this fractional

assignment algorithm compare as far as response time is concerned? By making

some simplifying assumptions, a queueing model can be formed and solved for this

fractional assignment algorithm.

Assume a central queue with overall arrival rate I = VV and 5

hosts with service rates IW, " p3 " p4, L5 " rhen jobs enter the

central queue they are immediately transferred to one of the hosts based on the

optimal fractional assignment, fi to each host (Figure 3) to minimize response

time. BOST

fI 2 U2af

F gure 3: Fractional. Ama ignaent Quoucing ,Model

°f3.- - ..- .- .... _ .-" . ii. .. ..' -. " :- ... . . ' .- _ _- . " - . .3 i . .. . .
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The system response time, T, is given by

T = i- i-)

and the fraction f. can be calculated from
1

1±. =---- i~p 1

i-

The derivation of f. is obtained as follows. Starting with1

T f i/1(i 
1 f

we need to minimize delay, T, subject to f, 1. The Lagrangian
i-1

function can be defined as

___1 __- - g(i fi -1I)

where g is the Lagrangian multiplier. Taking the derivative and

setting it equal to zero results in

Xfi(

Since fi 1 we have

iJl
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~i g i -i

i=l .i

Substitutingq into formula (1) gives

fem 9. 1 .
iIL

The results of these calculations for the values used in the

simulations are given below in Table 4.

Table 4 - Fractional Assignment Response Times

System Load

OPTIMUM LIGHT MODERATE

FiRACTION

.24

.16

.20 14.59 30.55

.24

.16
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Note that the response times calculated here do not contain any

delay for actual movement of jobs so this is a very optimistic figure.

Further, it was assumed that the arrival rates were known so that the

f.'s are the best possible fractions.

4.2.3 Analytical Model - No Network

Here we assume five independent hosts with no network and

model each as a simple M//1 queue. This serves as an upper bound.

The results are average response times of 44.37 seconds for moderate

loads and 28.92 seconds for light loads.

The two simulation and three analytical models used for

comparison have now been described.

0
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5.13 Simulation Results

The simulations of the BDT heuristic proceeded in two stages. Stage 1 is

- static in the sense that no updates of the a priori probabilities and

maximizing actions are performed. It is dynamic in the sense of dynamically

-. updating state information and performing job movement. The stage 1 simulations

* provided evidence that the heuristic could operate effectively and thereby merit

further testing. Further, stage 1 simulations model the situation of losing all

- the monitor nodes, i.e., upon losing the ability to dynamically update the

maximizing actions, the BDT scheduling heuristic would switch to maximizing

actions modeled in stage 1. The results from stage 1 also serve as a point of

comparison to the completely dynamic BDT simulation (stage 2). Stage 1

simulations are run for 10 minutes, statistics cleared and then run for an

additional 30 minutes (a total of 2,400,000 time units). This length of run was

adequate to reach equilibrium.

Stage 2 is a completely dynamic BDT simulation, dynamically updating the a

priori probabilities, maximizing actions, state information and performing job

movement. Performing the simulations in this two stage manner provided some

interesting results as we shall describe. Stage 2 simulations are run for 10

minutes, statistics cleared and then run for an additional 90 minutes (a total

of 6 million time units). As explained later this was adequate to reach

equilibrium.

Three measures are used to explain the results of the simulations:

system-wide average response time, average number of jobs waiting at each host,

and the percentage of job movement. This last term needs some explanation. By

percentage of Job movement is meant the total number of jobs moved divided by

the total number that entered the system. Note that jobs may move more than

once and that each move is counted separately because each move adds overhead to

the system. This measure is used to provide an indication of whether the
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algorithm is stable. Too much movement is considered unstable. The size of

jobs is not taken into account in the. percentage of movement figure but it is

accounted for in response time because jobs are delayed in the subnet

proportional to their size. Note that fairness is not treated in this study but

it can easily be added simply by keeping track of which jobs move and by

limiting their subsequent movement.

5.1 Stage 1: Varving the Bias (Tuning)

Both the baseline simulation model and the BDT model contain the following

built in bias: a host i does not move a job to the least busy host if their

relative difference in busyness is less than a bias. The purpose of this bias

is to avoid moving jobs for small differences in busyness. Without such a bias

it is possible to get into unstable conditions of transferring jobs back and

forth between hosts. Even with a bias, job looping or a large number of moves

of a job are possible, but the probability is lower. This bias is a

straightforward addition to the BDT problem description found in Section 3 and

Appendix I. A number of simulations were run to choose a reasonable bias for

use in subsequent simulations. The results for the BDT model under tuning loads

are depicted in Table S.

For tuning loads, which were chosen as an approximate mixture of light and

moderate arrival rates but biased slightly towards the moderate arrival rates, a

bias-2 provided only a small loss in response time (14.7+ .37 seconds) as

compared to bias=0 response time but with substantially lower job movement 27.6+

1.45 percent as compared to 75 ± 28.5 percent (Table 5). Bias=2 also proved to

be a good choice with light and moderate arrival rates (results not shown - see

(36]). A bias-3 resulted in too great a loss in response time (16.5+.7

seconds). Consequently, for all subsequent simulations the bias was set equal

to 2.
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Note that for a bias=0 the variation in the percentage of job movement

could be considered unstable as shown by the 90% confidence interval (75+28.5%).

Percentage of movement greater than 100% is possible because jobs can move more

than once. This implies that with the wrong bias this algorithm may not be very

stable and in some systems it may be necessary to dynamically adapt this bias.

On the other hand, the bias-2 choice proved to be robust over a wide range of

arrival rates (twuiiirg, light. moderately, heavy).

Load balancing was very similar for all biases (although the average queue

lengths increase with increasing bias) and therefore did not really contribute

to the choice of a bias.

Similar results (not shown here) were obtained for the baseline simulation

model and therefore we also chose bias=2 for it.

Table 5 - Stage 1: BDT Tuning

BIASES

BIAS=O BIAS=I BIAS=2 BIAS=3

Response Time 14.13+.15 14.54+.42 14.7+.37 16.54+.7

% of Movement 75+28.5 47.3±10.7 27.6+1.45 24.3+2.5

Load Balancing

(av over 3 runs)

Host 1 1.06 1.37 1.67 1.80
Host 2 1.28 1.06 1.05 1.50
Host 3 0.86 1.05 0.96 1.34

Host 4 0.85 0.77 0.82 1.31
* Host 5 0.82 1.30 1.12 1.29

5.2 Stage 1: Varyina the Arrival Rates

Table 6 depicts the 90% confidence intervals for response time and

percentage of job movement for various arrival rates. Also shown are average

queue lengths.
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Under heavy arrival rates very little movement takes place (1.4 t .6

percent) because of the heavy load threshold in the scheduling algorithm. That

is, once a heavy load condition is detected no jobs are moved unless the

condition subsides. In this situation the heavy condition results in an

unbalanced system, but it does not matter since each host has more than enough

work to handle.

The results for the light and moderate arrival rates are of more interest

but can be better discussed later (section 5.5) by comparing them to the

analytical and baseline simulation models.

Table 6: BDT Scheduling Algorithm

Stage 1: Varying the Arrival Rates

]Liiz Moderate Heavy

Resgonse Time (sec.) Grows Infinitely

(90% Confidence because arrival

Interval) rates are faster

14.65+.583 22.18+1.84 than service rates

% Of Movement
(90% Confidence

Interval) 15+1.6 55.2+10.6 1.4+.6

Load Balancin,
(av. Queue Lengths
over 5 runs)

Host 1 0.74 1.6 33.1

Host 2 0.98 1.65 91.6

Host 3 0.72 1.67 72.1

Host 4 0.21 1.40 46.1

4 Host 5 1.12 1.53 84.3

Scheduling Interval - 2 seconds

Subnet Delay 1/2 sec per packet

Bias 2

* ' - . .- ~---
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5.3 Stare 1: Vary the Busyness of the Subnet

In these simulations the effect of various delays in the subnet (4, 8, 16,

and 24 seconds per job) was studied (Table 7) . As expected, increased delays in

* the subnet caused an increase in response time both for light and moderate loads.

Under light loads a job movement delay of 24 seconds reduced the amount of

* movement considerably (to 8.2+1.7 percent). This is because jobs put into the

subnet are in transit for a long time and this makes the system appear more

1 lightly loaded than it is. The correct action uander very light loads is to do

* nothing, hence the reduced movement.

Under moderate loads, response time degrades considerably as delays in the

subnet grow but job movement continues to increase, e.g. , from 35+2 .6 percent

with 4 second delay to 91+11 percent with 24 second delay. This is due to two

factors. One, jobs in the subnet do not alter the load at the receiving host for

*quite some time. During this time, scheduling decisions are continuing to be

*made and even more jobs are being sent to this perceived least busy host. For

* moderate loads, in contrast to the light loads, there are enough jobs at the

* arious hosts so that jobs are continued to be moved. A possible solution to

this problem is to create a window At in which a host will not transmit to a site

ore than 1 job within this window. The window could adapt to the delays in the

subnet. timulation studies using this approach are reported in [39] Another

* possibility is to use Some form Of estimation techniques to predict what other

* hosts will do.

The second reason for reduced response times under moderate loads is a

reduced level of accuracy about the state of the network. State information

*update messages are also experiencing the increased delays. Since update

Messages are only one packet in length, their delay varies from 250 ->500 ->

* 1,000 -> 1,500 milliseconds corresponding to the 4, 8, 16 and 24 second delays

*per j ob. Recall that each job, whose size is taken from a distribution given in
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Table 2 is a collection of packets. This decrease in accuracy of state

information causes additional movement under moderate loads and contributes to

the increase in the degradation of response time as delays in the subnet

increase.

Table 7: Stage 1

Varying Subnet Delays

Averaie Subnet Delays Per Job

4 8 16 25

Light Load

Response Time 12.7+3 14.65+.5 83 15.04+.7 16.4+.63

% of Movement 10+2 15±1.6 15.3+.9 8.2+1.7

Moderate Load

V4
Response Time 17.1±1.3 22.18+1.84 27.7+1 42.04+4.6

*% of Movement 35+2.6 55 .2+10.6 62.6+4.1 91_+11.0
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5.4 Stage 1: Vary the Scheduling Interval

For all previous simulation results the scheduler ran at least every 2

seconds, more often if there were jnb completions. We now tested the effect of

slowing down the job scheduler (Figure 4 and 5) and slowing down the subnet to a

1 second delay per packet.

As the interval is lengthened from 2 seconds to 16 seconds there is a

steady loss in response time (RT) and a corresponding rise in movement costs

(i.e., percentage of movement goes down). If we look at any two sets of data in

Figure 4, we can consider this as quantifying the effect of slowing down the

scheduler. For example. when the scheduler runs every 2 seconds we have RT =

25.2 + 2.4 seconds and percentage of movement 53 ± 6%; and if the scheduler runs

only every 16 seconds we have a response time of 30.1 + 4.9 seconds with a 43 +

5.75% percentage of movement. Therefore, slowing the scheduling interval from 2

to 16 seconds results in approximately 5 second loss in RT and a gain of about

10% less jobs being moved. Choosing the right scheduling interval is a difficult

tradeoff involving not only RT versus percentage of movement but the cost of

running the scheduler itself. For moderate loads one might choose 8 seconds as

the scheduling interval because it is somewhere in the middle.

0
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FIGURE 4: BDT
STAGE 1: VARY THE SCHEDULING INTERVAL
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A different effect is seen under light loads (Figure 5) When the

scheduler goes from 2 to 8 seconds there is reduction in movement and a slight

improvement in response time. This is due to the fact that under light loads

less invocation of the scheduler results in less overhead (these overheads are

accounted for in the simulation model), and for scheduling intervals of 2 seconds

there is excess movement that is not contributing to improved response time.

Finally, using a scheduling interval of 16 seconds results in a loss of response

time and an increased movement. This is a result of the scheduler not being

invoked often enough to transmit jobs to idle hosts. So, according to this test,

we would only have to run the scheduler every 8 seconds for light loads.

5.5 Summary Statistics for Stafe 1

Tables 8 and 9 summarize the simulation statistics for light and moderate

loads, respectively. These tables also include a comparison to the analytical

and baseline simulation models.

Under light loads (Table 8) there is a 50, improvement in response time of

the Bayesian decision theory heuristic over the no network case. Also it seems

that BDT performs similar to the fractional assignment algorithm. Remember,

though, that the fractional assignment response time (14.6 seconds) is very

optimistic and does not account for any costs. Hence, using knowledge about the

state of the network, our BDT heuristic performs better than knowing the

statistical distributions of loads which is necessary to calculate the optimal

fractional assignments (see Section 4.2.2). The analytical lower bound for

response time of 6.26 seconds is much too low because of the simplifications made

in deriving it, and the baseline simulation is a better lower bound (11.76 + .3

seconds). BDT then performs within 25% of the baseline which uses perfect

information. This difference can be considered as the cost of inaccurate

information.

. . . . .
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For moderate loads (Table 9) there is again a 50% improvement in response

time over for the BDT heuristic over the no network case. Here, though, BUT does

considerably better than the fractional assignment (22.18 + 1.84 seconds as

compared to the optimistic figure of 30.55 seconds for the fractional assignment

approach). This is a clear indication that passing reasonably current state

information provides improved performance. However, inaccurate information

extracts a fairly heavy toll in the moderate load situation by reducing response

time from 14.64 seconds (baseline) to 22.18 + 1.84 seconds. This seems to be due

to too much movement (26% versus 55.2%). This implies that there is room for

improvement in the BDT heuristic. The dynamic updates of BDT probabilities and

maximizing actions provide some of that improvement (section 5.6, 5.7, 5.8).

Table 8

Stage 1: Summary Statistics - Light Load

Analytical Models
Basel1ine

No Network Fractional (av-over BDT(from
(Upper bound) Lower Bound Assignment 3 runs) Table 6

Response
Time (sec) 29.22 6.16 14.6 11.7+.3 14.65+.583

% of Job
Movement - - - 8+.7 15+1.6

Load
Balancing

Host 1 - - - .77 0.74
Host 2 .97 0.98
Host 3 .74 0.72
Host 4 .23 0.21
Host 5 1.09 1.12
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Table 9

Stage 1: Summary Statistics - Moderate Load

Analytical Models

Baseline
No Network Fractional (av-over BDT(from

(Upper bound) Lower Bound Assignment 3 runs) Table 6)

Respont
Time (,*,) 44.67 9.3 30.55 14.64+2.0 22.18+1.84

S of Job
Movement - - 26+5.1 55.2+10.6

Load
Balancing

Host 1 - - 1.65 1.6
Host 2 1.03 1.65
Host 3 0.96 1.67
Host 4 0.82 1.40
Host 5 1.12 1.53

5.6 Stage 2: Dynamic Bayesian Decision Theory Simulation

The dynamic Bayesian decision theory simulation has a number of important

parameters including i) the scheduling interval, (ii) the bias, (iii) the period

of state information update, (iv) the period of recalculating the maximizing

actions. (v) the arrival rates, and (vi) the delays in the subnet. Testing a

large range of values for each parameter and in combination with each other is

prohibitive. To reduce the problem we chose a scheduling interval of 8 seconds

and bias = 2 as derived from the Stage 1 simulation. Then, tuning the DBDT

simulation consisted of finding good values for the period of state information

update and the period of recalculating the maximizing actions. Finally, we then

performed a significant number of tests to determine the effect of various

arrival rates (section 5.7) and various delays in the subnet (section 5.8).

The tuning proceeded somewhat subjectively by arbitrarily choosing various

values for the period of state information update and for the period of
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recalculating the maximizing actions. When the two parameters in combination

produced results in line with Stage 1 and the analytical models we assumed that

we had reasonable values for these parameters. The result was that the period

of state information update needed to be 2 seconds and the period of

recalculating the maximizing actions was every 6 seconds. These were held

constant in the remainder of the simulations.

5.7 Stage 2: Vary Arrival Rates

In the DBDT tests (Stage 2), the length of the simulation runs are very

important because the probability distributions are being determined on line.

For light loads the response times and percentage of movement statistics converge

almost immediately. The results of three different runs (each run 100 minutes)

are shown in Figure 6. For moderate loads it takes about 70 minutes for the

probability distributions to converge to the level of observability of the

system. After this time, the response times and percentage of movement

statistics are fairly constant. Figure 7 shows these results for 3 different

runs at moderate loads.

7'1
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Table 10 summarizes the statistics for light and moderate loads using 90T

confidence intervals for response times ePd percentage of job movement after 100

minutes of simulated time. Note that the DDDT response time for the moderate

case is 20.06+.8 seconds and the percentage of movement is 40.8 1.57. For the

static BDT simulations (Table 9) the response time was 22.18+1.84 seconds with

55.2+10.6 percentage of movement. The DBDT tests results in both an improvement

in response time and a lowering of movement costs due to the dynamic updates of

maximizing actions.

Table 10

Stage 2: Light and Moderate Arrival Rates for DBDT

Arrival Rates

Light Moderate

Response
Time (sec) 13.6+.41 20.06+.8

% of Job
Movement 18.2+1.1 40.8+1.5

Load Balancing
(av-over 4 runs)

Hcst 1 0.80 1.78
Host 2 0.74 1.49
Host 3 0.59 1.51
Host 4 0.22 1.33
Host 5 0.70 1.22

Delay in Subnet = 1/2 sec/packet

5.8 Stage 2: Vary Delay in Subnet - and A Comparison to Static BDT Simulations

For the DBDT heuristic under light loads, varying the delay in the subnet

(Table 11) results in about the same performance as in the static BDT simulations

(compare Table 7 and Table 11). The same arguments used to ezplain Table 7
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apply here. This suggests that under light conditions it is not necessary to pay

the cost of updating the maximizing actions.

However, for moderate loads (compare Table 7 with Table 12) the improvement

seen in the DBIr heuristic grows as the delay in the subnet grows. The reason is

that the DBDT simulation is equipped to identify the fact that the quality of its

state information is degrading and uses that in making its decision. For

example, summarizing information from Table 7 and Table 12 shows:

% Improvement in
Delay Per Job Static RT Dynamic RT Response Time

8 22.18 20.06 9.5'

16 27.7 24.8 10.4%

24 42.04 33.4 20.55%

If one also compares the amount of movement (Tables 7 and 12), it is seen

that it is significantly reduced from 91% to 54.5% in the case of 24 second delay

in the subnet. This kind of performance improvement of the DBDT case over the

BDT (static) case is also expected when the network gets larger because there is

again reduced accuracy of state information, but it is arising due to separation

of hosts and not necessarily to increased traffic in the subnet. In either case

the end results are similar.

J
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Table 11

Stage 2: Vary Delay in Subnet-DBDT Light Load

Delay in Subnet (sec)

4 8 16 24

Response Time
(sec) 13.4+.3 13.6+.41 16.1+.2 17.2+.6

o of Movement 20.1+1.2 18.2+1.1 21.3+.7 19.5+1.1

Load Balancing
(av-over 3 runs)

Host 1 0.91 0.80 1.0 0.85
Host 2 0.77 0.74 0.78 0.77
Host 3 0.62 0.59 0.77 0.64
Host 4 0.17 0.22 0.17 0.17
Host 5 0.82 0.70 0.80 0.73

Table 12

Stage 2: Vary Delay in Subnet-DBDT Moderate Load

Delay in Subnet (sec)

4 16 24

Response Time

(sec) 19.9+.6 20.06+.8 24.8+1.1 33.4+1.7

% of Movement 41+2.1 40.8+1.5 45.5+2.1 54.5+3.2

Load Balancing
(av-over 3 runs)

Host 1 2.13 1.78 2.12 2.6
Host 2 1.73 1.49 1.81 2.19
Host 3 1.68 1.51 1.53 1.87
Host 4 1.57 1.33 1.15 1.31
Host 5 1.39 1.22 1.44 1.4

Consider the following, assume that the DBDT heuristic is running and

operating in steady state producing an average response time of 20.06 seconds for

an 8 second delay in the subnet (Table 10). At this point there is a failure of

both monitor nodes. The system simply shifts to the static maximizing actions
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which would approximately produce an average response time of 22.18 seconds

(Table 7), a fairly small degradation. However, if the delay in the subnet was

24 seconds then the system would be experiencing an average of 33.4 second

response time before the failure and an average of 42.04 seconds (Table 7) after

the failure. Since this later response time is approaching the no network

• .response time (44.67 seconds), it may be wise to simply turn off load balancing

when the average delay per job reaches X, where X would be approximately 24

seconds delay per job in this case. Remember, for a heavily loaded system (all

hosts have more than 20 jobs) we are already turning off load balancing, and now

we are suggesting adding the requirement to turn off load balancing when the

state information becomes too old.

Finally, since the DBDT simulation operates as well as or better than the

static BDT simulations (this is seen by the above arguments as well as by further

comparing Tables 8 and 9 with Tables 10, 11 and 12), then the comparison to the

baseline and analytical models described in Section 5.6 remains valid, further

stressing the relatively good performance of our heuristic.

6.0 Conclusion

The form of decentralized control under investigation here has not been

dealt with to any large degree because of its intractable nature, although it is

becoming increasingly important for distributed computer systems. We have

developed a low cost heuristic for decentralized control of job scheduling when

no a priori information is known about jobs by extending Bayesian decision theory

and studied its performance. Using extensive simulations, our heuristic is shown

to provide good response time and load balancing in comparison to analytical and

baseline simulation models. The amount of movement necessary to achieve this

performance is quantified. A major reason for our heuristic performing well is

that it is able to adapt to the quality of the state information it is receiving

and use that in making its decisions. This ability becomes increasingly
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important for busy or noisy subnets and we hypothesize also for larger and larger

networks.

Several specific observations of our simulations include: that once tuned

the algorithm works in a stable manner over a wide variety of conditions and over

a large number of runs, that the probability distributions describing the true

states of nature and the likelihoods of an observation converge to values

representing the level of observability of the system, that the loss of monitor

nodes does not cause major problems, that the heuristic works well under light

loads but simpler approaches would be just as good, that the need for the

heuristic increased both for moderate loads and for a decrease in the accuracy of

state information available, and several thresholds included in the heuristic

improve the operation of the algorithm.

As a final suggestion we believe that the heuristic should be modified to

avoid moving very large jobs. For example, when our heuristic decides to move a

job, it removes a job off the back of the local queue without regard for size. A

better approach would be to first check if this job is very large, if so, move

some other job. This should further improve response time.

-.-
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Appendix I
Bayesian Decision Theory Problem Formulation

Stage 1

(1) Let A = (a.), j = 0, .. 5:

a0 : move no jobs

a : moV3 :,e job from queue i to host 1
1

a2: move one job from queue i to host 2

a3 : move one job from queue i to host 3

a4 : move one job from queue i to host 4

a 5: move one job from queue i to host 5

(2) The states of nature are defined as e = (e0 P l ... e 16 where:

0 = conditions are light (i.e., no host has more than 4 jobs), or

conditions are moderate (not heavy and not light) and no host is least
busy).

01 = conditions are heavy, i.e., all hosts have more than 20 jobs.
Note, all other cases are considered moderate loads. States 02 - 016

inclusive deal with moderate loads plus the added requirement listed
below.

e2 - host 1 is least busy and is less busy than host i by 1-4 jobs.

o - host 2 is least busy and is less busy than host i by 1-4 jobs.
3

0 - host 3 is leasy busy and is less busy than host i by 1-4 jobs.
4

e7 - host 4 is least busy and is less busy than host i by 1-4 jobs.

.6 - host 5 is least busy and is less busy than host i by 1-4 jobs.

O - host 1 is least busy and is less busy than host i by 5-8 jobs.
6

o - host 1 is least busy and is less busy than host i by 5-8 jobs.
8

e - host 2 is least busy and is less busy than host i by 5-8 jobs.
8

0 - host 4 is least busy and is less busy than host i by 5-8 jobs.

0 1 - host 4 is least busy and is less busy than host i by 5-8 jobs.

0 0131 -host52 is least busy and is less busy than host i by 5-8 jobs.

0 - host 1 is least busy and is less busy than host i by > 8 jobs.

14

0 s- host 4 is least busy and is less busy than host i by > 8 jobs.

0 16- host 5 is least busy and is less busy than host i by > 8 jobs.
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(3) The Utility Function
Simply stated, the theory of utility makes it possible to measure the
relative value to a design team (or an individual) of the payoffs or
consequences in a decision problem. This is based on two axioms of utility.

1) If payoff Rlis preferred to payoff R then U(R ) > U(R ) ; if R is
2 1 2' 2

preferred to R1 then U(R ) > U(R ) and if neither is preferred
12 1

then U(R1 ) = U(R2).
12

2) If you are indifferent between (a) receiving payoff R1 for

certain and (b) taking a bet or lottery in which you receive R2

with probability p and payoff R3 with probability (l-p) then

U(R1 pU(R2 ) + (1-p)U(R3).

We need to apply these axioms in the assessment of utility functions
for job scheduling. In most computer systems analysis, utility is expressed
in terms of utilization, throughput or delay. These are all performance
related issues. In general, this is not really satisfactory for distributed
systems of interest since reliability and performance are equally important
requirements and therefore both should be factored into the decision making
process although this is usually quite difficult to do. As a simplified
example consider the following development of a utility function.

*

First, the most profitable. R , and least profitable R. payoff must be
*

determined. Then U(R ) and U(R.) can be quantified in any way providing

U(R ) > U(R). Choose U(R ) = 1 and U(R) = 0. Next consider any payoff R,

then U(R) > U(R*). To determine U(R) more precisely consider the following

choice of lotteries.
Lottery I = Receive R for certain.

Lottery II = Receive R with probability p
and R* with probability 1-p.

Then the expected utility of lottery I is U(R) and of lottery II is pU(R*) +

(l-p) U(R). In general, a decision maker would choose the lottery with

higher expected utility. However, if you can determine the probability p
that makes you indifferent between the two lotteries, then the utility of R
must be equal to p. In this manner you can determine the utility of any

payoff, however complicated.
In order to further clarify the determination of a utility function

let's consider a simple example for job scheduling. The primary
requirements for the job scheduling algorithm are reliability and good
performance. Both of these requirements need to be considered when
generating the utility function. The worst payoff R. as a result of a

decision would be if that decision resulted in an unreliable situation and
C

poor performance. The best payoff R occurs when each of the above
requirements is met to the highest degree.

Consider the following situation of a 5 host network. Host 1 and 2

are identical machines but host 1 is more reliable than host 2. Host 3 is
the same machine as host 1 and 2 but with limited memory compared to host 1
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and 2. It is as reliable as host 1. Host 4 is very fast compared to hosts

1, 2 and 3 but not as reliable as any of them. Host 5 is slow compared to
hosts 1-4 inclusive and equally reliable as hosts 1 and 3.

Now, if the state of nature is 0 (all hosts are equally busy) and the
0

action is a (no jobs are moved) then no utility is gained or lost from

performing action a0. This serves as a reference point and is assigned the

value .5. i.e., Ue 0 R a0 ) 0 .5. Hence values between 0 - .49 indicate

losses of utility while values .51 - 1.0 indicate gains of utility.
Now for action a1 (move a job to host 1) given 00 we must have

U(R*) i U(00 , a1 ) < u( O, a0), or 0 < u( 0 , a1 ) < .5 because moving a job

during conditions of light load is considered a loss of utility. Choose U(G

0a a1 ) = .3. But taking action a2 (move a job to host 2) given e0 is an

even greater loss of utility than U( 0 0 a1 ) because host 2 is less reliable

than host 1. Hence 0 < U(0 a ) ( .3. we choose U(0 O , a2) = .2. Taking
0' 2

action a3 (move a job to host 3) given 03 is also a loss of utility. In

this case the loss is greater than U(e 0 , a 1 ) because host 3 has less memory

than host 1 and therefore, in general, jobs may take longer to complete at
host 3. On the other hand, host 3 is more reliable than host 2 and we judge
that reliability is of more importance than performance so .2 < U(e 0  a3 ) <

.3 choose U( 0  a3) = .25. Continuing in this manner designers can assign

utilities to each element of the utility function (Table Al). It is

generally not critical to choose an exact quantification and a sensitivity
analysis can be performed on the utility function [36].

This technique of developing a utility function may, at first, seem to

be totally subjective, but it is not. If it is possible to express
performance and reliability gains and losses as a mathematical exypression,

then that expression can be used in developing the utility function. If it
is not possible to develop a mathematical expression, then in our view the

designers have no other choice but to use the above approach explicitly.

Furthermore, too often one is lulled into believing that a mathematical
model of a problem is not subjective. This is true only after it is

formulated. For example, a discipline such as team theory requires an

observation of controller i, Z i , to be some function of the states of

nature, e, and the controls, U, written as Z. = N. (e, U) and it requires a1 2.

loss function, such as,

S- 1/2(0 + aU + U) 2 + hU2 + qU (for a two member-team).
1 2 1 2

How are the 2 functions N. and a choosen? Supposedly they model the true

system and are determined by careful thought and analysis. But that is

exactly what the methodology for the development of the utility function is.

In summary, even though the development of the utility function is
somewhat subjective, attempting to create such a function is a viable

methodology that forces designers to consider the factors involved and their

interrelationships. This technique is certainly more viable than making

decisions in a completely ad hoc manner.
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Table Al: The Utility Function

The Utility Function = (ei , a.) is defined

by the following table:

States of Mature A =actions
Sal a a4 a

.5 .3 .2 .25 .3 .25

.5 .3 .2 .2S .3 .25

62 .2S .75 .28 .29 .3 .29

#3 .3 .3 .65 .29 .3 .29

64 .3 .3 .28 .7 .3 .29

6s  .25 .3 .28 .29 .75 .29

68 .3 .3 .28 .29 .3 .7

.15 .9 .23 .24 25 .24

•.2 .25 .8 .24 .25 .24

.2 .2S .23 .85 .25 .24

- 610 .15 .25 .23 .24 .9 .24

l .2 .25 .23 .24 .25 .85

912 0 1.0 .13 .14 .15 .14

613 .05 .15 .95 .14 .15 .14

64 .05 .15 .13 1.0 .15 .14

0 .15 .13 .14 1.0 .14

4 1 .05 .15 .13 .14 .S 1.0
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(4) The set of possible observations Z z0, z1  . z16 where each zk

corresponds to 0 for k = j except that the z S are observations and not
J k

true states. The values Pi(zkle.) assumed for each host in the static BDT

simulations are:

P (zle)

Statin of , z I  2 93 z4 ZS  Z6 17 18 Z9 110  111 *z 213 Z14  Z|S 216INature

.08 .fl035 .0933 .0633 .0633 .0983 .0883 .07 .07 .07 .07 .07 .03 .03 .03 .03 .03

.3S .08 .03 .03 .03 .03 .03 .07 .07 .07 .07 .07 .0633 .0833 .0833 .0833 .0833

.04 .003 .14 .08 .08 .08 .08 .1 .0625 .0625 .0625 .062S .OS .018 .018 .018 .010

03  .04 .003 .08 .04 .08 .08 .08 .062S .1 .0625" .0625 .0625 .018 .01S .01 .018 .018

4  .04 .003 .08 .08 .14 .06 .08 .0625 .062S .1 .0625 .062S .018 .018 .07S .018 .018

.04 .003 .08 .08 .08 .14 .08 .0625 .0625 .0625 .1 .362S .018 .018 .018 .07S .018

.$ .04 .003 .08 .08 .08 .08 .14 .0625 .062S .0625 .0625 .157 .018 .018 .018 .018 .018

67 .04S .04 .07 .07 .07 .07 .07 .24 .03 .03 .03 .03 .JS .012S .012S .012S .0125

A8  .00s .005 .11 .11 .07 .07 .07 .03 .24 .03 .03 .03 .012S .15 .0125 .0125 .0125

09 .005 .005 .07 .07 .15 .07 .0? .03 .03 .243 .03 .03 .045 .045S .01S .0455 .0455

60 .005 .Ms .07 .07 .07 .037s .07 .03 .03 .03 .24 .03 .0125 .012S .125 .15 .012s

@ .OS .OOS 0 .07 .07 .07 .15 .03 .03 .03 .03 .24 .012S .012! .0)25 .012S .15

Olt .r0776 .0224 .06 .06 .06 .06 .06 .2 .03 .03 .03 .03 .22 .011 .015 .O0S .O0s

*13 .0077 .0201 .1183 .1183 .06 .06 .03 .2 .03 .03 .03 .01S6 .22 .015 .015 .01S .015

6)4 .0076 .0224 .06 .06 .13 .06 .06 .03 .03 .2 .03 .03 .01S .01S .22 .015 .015

.OOS .0224 .06 .06 .06 .1326 .06 .03 .03 .03 .2 .03 .OS .OIS .01S .22 .OS

Am .005 .0224 .06 .06 .06 .06 .13 .0313 .0313 .03 .03 .2 .015 .0is .015 .01S .22



-47-

(5) The Probability distribution P(M) assumed for the Static BDT Simulations, is

12 .04

0 05 very light at times.13 .04

e1  .05 very heavy at times 013 .04*2 .1 14 .04 .2
3 .115 

.04

04 .16 .04
e4 .1 .5

e5 .1 r

.1 16

67 .04

8 .04

69O .04 .2

.04

Finally, we show an example of a list of maximizing actions

for a particular controller at time t:

a (maximizing

z (observations) action)
0z a1

z1  al

z2 aI

z3  a I
z4  a2
z a3
Z a4

z7 a1

z8  a1
z9  a9 3zlO a4

zu  a5

12 a1
z13 a2
z14 a3

Z15 a4

16 a,
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that it is able to adapt to the quality of the state information it is receiving

and use that in making its decisions. This ability becomes increasingly


